metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3-Allyloxypicolinato- $\kappa^2 N$, O^2)bis[3,5difluoro-2-(2-pyridyl)phenyl- $\kappa^2 C^1$,N]iridium(III)

Yu-Ling Zhao* and Jing Meng

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: ytz823@hotmail.com

Received 1 November 2009; accepted 4 November 2009

Key indicators: single-crystal X-ray study; T = 185 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.031; *wR* factor = 0.080; data-to-parameter ratio = 13.4.

The title complex, $[Ir(C_{11}H_6F_2N)_2(C_9H_8NO_3)]$, consists of one Ir^{III} ion, two *C*,*N*-bidentate 3,5-difluoro-2-(2-pyridyl)phenyl (F₂ppy) ligands and one *N*,*O*-bidentate 3-allyloxypicolinate (pic-3-Oall) ligand. The Ir^{III} ion is hexacoordinated by two C atoms and two N atoms from the F₂ppy ligands and one N atom and one carboxylate O atom from the pic-3-Oall ligand, displaying a distorted octahedral geometry. In the crystal structure, weak intermolecular C-H···F and C-H···O hydrogen bonds link the complex molecules into a three-dimensional supramolecular structure.

Related literature

For general background to phosphorescent materials, see: Baldo *et al.* (1998, 2000); Liang *et al.* (2006); Thompson (2007); Tsuboyama *et al.* (2003). For bond lengths in organic compounds, see: Allen *et al.* (1987).

Experimental

Crystal data $[Ir(C_{11}H_6F_2N)_2(C_9H_8NO_3)]$ $M_r = 750.70$ Monoclinic, C2/ca = 33.429 (4) Å

b = 9.9117 (12) Åc = 16.0265 (19) Å $\beta = 94.107 (2)^{\circ}$ $V = 5296.5 (11) \text{ Å}^{3}$

Z = 8Mo $K\alpha$ radiation $\mu = 5.11 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.305, \ T_{\max} = 0.862$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.031 & 379 \text{ parameters} \\ wR(F^2) &= 0.080 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 1.72 \text{ e } \text{\AA}^{-3} \\ 5087 \text{ reflections} & \Delta\rho_{\text{min}} = -0.59 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

r1-C7	1.983 (4)	Ir1-N2	2.051 (4)
r1-C18	2.002 (4)	Ir1-N3	2.132 (3)
r1-N1	2.045 (3)	Ir1-O1	2.135 (3)

T = 185 K

 $R_{\rm int} = 0.039$

 $0.31 \times 0.23 \times 0.03 \text{ mm}$

14169 measured reflections 5087 independent reflections

4364 reflections with $I > 2\sigma(I)$

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots F1^{i}$	0.95	2.60	2.997 (6)	106
C28-H28···F2 ⁱⁱ	0.95	2.55	3.280 (6)	134
C10−H10···F3 ⁱⁱⁱ	0.95	2.50	3.299 (6)	142
$C12-H12\cdots F4^{iv}$	0.95	2.56	3.130 (6)	119
$C26-H26\cdots O1^{v}$	0.95	2.63	3.519 (5)	155
$C14-H14\cdots O2^{vi}$	0.95	2.54	3.275 (6)	134

Symmetry codes: (i) x, y - 1, z; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}$; (v) $x, -y, z - \frac{1}{2}$; (vi) x, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Gansu Province (096RJZA086) and the 'Qing Lan' Talent Engineering Funds (QL-05–23 A) of Lanzhou Jiaotong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2251).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). *Nature (London)*, 395, 151–154.
- Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). *Nature (London)*, **403**, 750–753.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liang, B., Jiang, C. Y., Chen, Z., Zhang, X. J., Shi, H. H. & Cao, Y. (2006). J. Mater. Chem. 16, 1281–1286.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Thompson, M. (2007). MRS Bull. 32, 694-701.

Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. **125**, 12971–12979.

Acta Cryst. (2009). E65, m1546-m1547 [doi:10.1107/S1600536809046479]

$(3-Allyloxypicolinato-\kappa^2 N, O^2) bis [3, 5-difluoro-2-(2-pyridyl) phenyl-\kappa^2 C^1, N] iridium (III)$

Y.-L. Zhao and J. Meng

Comment

Since Forrest and co-workers (Baldo *et al.*, 1998) successfully utilized the phosphorescent material PtOEP to fabricate lightemitting devices, many heavy-metal complexes have been extensively investigated in highly efficient electrophosphorescent organic light-emitting diodes (Baldo *et al.*, 2000; Liang *et al.*, 2006; Thompson, 2007). Among the complexes, the cyclometalated iridium complexes are the most valuable emitting materials due to the results in higher efficiency and brightness (Liang *et al.*, 2006; Tsuboyama *et al.*, 2003). Recently, we synthesized a mixed-ligand iridium complex, $[Ir(F_2ppy)_2(pic-3-Oall)]$ (F₂ppy = 3,5-difluoro-2-(2-pyridyl)phenyl; pic-3-Oall = 3-allyloxypicolinate), which exhibits bright blue light.

The molecular structure of the title complex is shown in Fig. 1. The mononuclear iridium(III) complex has an approximately octahedral coordination geometry. The Ir^{III} ion is hexa-coordinated by two C atoms and two N atoms from two C,N-bidentate F₂ppy ligands, which exhibit *cis*-C,C and *trans*-N,N chelate dispositions, and one N atom and one carboxylate O atom from one N,O-bidentate pic-3-Oall ligand. All the bond lengths and angles of the molecule are within normal ranges (Allen *et al.*, 1987). For the F₂ppy ligands, the Ir—C bonds [1.983 (4) and 2.002 (4) Å] are shorter than the Ir—N bonds [2.045 (4) and 2.051 (4) Å] (Table 1). Due to steric interactions, the difluorophenyl groups are not coplanar with the pyridine groups; the dihedral angles between the substituted phenyl rings and pyridines are 7.60 (1) and 6.05 (3)°, respectively. For the pic-3-Oall ligand, the bond lengths of Ir—N and Ir—O are 2.132 (3) and 2.135 (3) Å, respectively. In the crystal structure, the complex molecules are connected by weak intermolecular C—H…F and C—H…O hydrogen bonds (Table 2 and Fig. 2), forming a three-dimensional supramolecular structure.

Experimental

The title complex was prepared as following. First, a cyclometalated Ir^{III} µ-chlorobridged dimer, $[(C_{11}H_6F_2N)_2Ir(µ-Cl)]_2$, was synthesized by reacting $IrCl_3.nH_2O$ (3.0 mmol) and 2-(2,4-difluorophenyl)pyridine (7.5 mmol). Then, the dimer (0.2 mmol) was reacted with 3-hydroxypicolinic acid (0.44 mmol) in 2-methoxyethanol (25 ml), affording bis[2-(2,4-difluorophenyl)pyridine](3-hydroxypicolinate)iridium(III), which (0.2 mmol) was reacted with 3-bromopropene (0.24 mmol) in the present of anhydrous K_2CO_3 (1 mmol) to give the title complex. Yellow plate single crystals of the complex were obtained by slow evaporation of the chloroform solution at room temperature.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 Å for methylene and 0.95 Å for other H atoms and with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found 0.05 Å from Ir1 and the deepest hole 1.57 Å from C7.

Figures

Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. Intermolecular C—H···F and C—H···O hydrogen bonds in the title complex, viewed along the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity. [Colour codes: pale-green F; grey C; red O; white H.]

$(3-Allyloxypicolinato-\kappa^2 N, O^2)$ bis[3,5-difluoro-2-(2- pyridyl)phenyl- $\kappa^2 C^1, N$]iridium(III)

 $F_{000} = 2912$

 $\theta = 2.4 - 25.8^{\circ}$

 $\mu = 5.11 \text{ mm}^{-1}$ T = 185 K

Plate, yellow

 $0.31 \times 0.23 \times 0.03 \text{ mm}$

 $D_{\rm x} = 1.883 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7056 reflections

Crystal data [Ir(C₁₁H₆F₂N)₂(C₉H₈NO₃)] $M_r = 750.70$ Monoclinic, C2/c Hall symbol: -C 2yc a = 33.429 (4) Å b = 9.9117 (12) Å c = 16.0265 (19) Å $\beta = 94.107$ (2)° V = 5296.5 (11) Å³ Z = 8

Data collection

Bruker SMART APEX CCD diffractometer	5087 independent reflections
Radiation source: sealed tube	4364 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
T = 185 K	$\theta_{max} = 25.8^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -40 \rightarrow 36$
$T_{\min} = 0.305, T_{\max} = 0.862$	$k = -12 \rightarrow 12$
14169 measured reflections	$l = -11 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_0^2) + (0.0425P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
5087 reflections	$\Delta \rho_{\text{max}} = 1.72 \text{ e} \text{ Å}^{-3}$
379 parameters	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ir1	0.365597 (4)	0.187358 (14)	0.693663 (9)	0.03540 (8)
N1	0.32777 (11)	0.0250 (3)	0.6890 (2)	0.0416 (8)
N2	0.39933 (11)	0.3598 (4)	0.7072 (2)	0.0426 (8)
N3	0.38322 (11)	0.1393 (3)	0.5719 (2)	0.0401 (8)
01	0.41710 (9)	0.0620 (3)	0.71739 (17)	0.0441 (7)
02	0.45390 (11)	-0.0942 (4)	0.6590 (2)	0.0706 (10)
O3	0.45584 (9)	-0.0840 (3)	0.4921 (2)	0.0564 (8)
C1	0.33883 (15)	-0.1008 (4)	0.7107 (3)	0.0485 (11)
H1	0.3663	-0.1186	0.7259	0.058*
C2	0.31159 (19)	-0.2054 (5)	0.7119 (4)	0.0617 (14)
H2	0.3203	-0.2935	0.7280	0.074*
C3	0.2721 (2)	-0.1808 (5)	0.6897 (4)	0.0640 (16)
Н3	0.2531	-0.2520	0.6897	0.077*
C4	0.25994 (15)	-0.0520 (5)	0.6672 (3)	0.0585 (12)
H4	0.2324	-0.0342	0.6521	0.070*
C5	0.28811 (13)	0.0521 (4)	0.6665 (3)	0.0441 (10)
C6	0.28083 (15)	0.1936 (4)	0.6436 (3)	0.0453 (11)
C7	0.31502 (13)	0.2809 (4)	0.6563 (3)	0.0409 (10)
C8	0.30985 (14)	0.4155 (4)	0.6320 (3)	0.0503 (11)
H8	0.3314	0.4776	0.6405	0.060*
С9	0.27359 (16)	0.4575 (5)	0.5961 (3)	0.0582 (12)
C10	0.24033 (16)	0.3774 (5)	0.5840 (3)	0.0613 (14)
H10	0.2156	0.4105	0.5592	0.074*
C11	0.24501 (13)	0.2484 (5)	0.6095 (3)	0.0536 (12)
C12	0.41786 (14)	0.4204 (4)	0.6459 (3)	0.0521 (11)
H12	0.4174	0.3770	0.5930	0.062*
C13	0.43741 (16)	0.5417 (5)	0.6554 (4)	0.0663 (14)
H13	0.4494	0.5824	0.6097	0.080*
C14	0.43921 (18)	0.6028 (5)	0.7324 (4)	0.0722 (16)
H14	0.4527	0.6865	0.7409	0.087*
C15	0.42135 (16)	0.5422 (5)	0.7969 (3)	0.0639 (14)
H15	0.4229	0.5834	0.8505	0.077*
C16	0.40075 (13)	0.4197 (4)	0.7843 (3)	0.0458 (10)
C17	0.37829 (14)	0.3462 (4)	0.8450 (3)	0.0446 (10)
C18	0.35732 (12)	0.2308 (4)	0.8132 (3)	0.0378 (9)
C19	0.33531 (14)	0.1565 (4)	0.8687 (3)	0.0434 (10)

H19	0.3199	0.0808	0.8492	0.052*
C20	0.33618 (17)	0.1936 (4)	0.9511 (3)	0.0525 (13)
C21	0.35735 (19)	0.3014 (5)	0.9836 (4)	0.0683 (16)
H21	0.3583	0.3225	1.0416	0.082*
C22	0.37700 (17)	0.3773 (5)	0.9289 (3)	0.0649 (14)
C23	0.43021 (13)	-0.0015 (4)	0.6533 (3)	0.0446 (10)
C24	0.41319 (12)	0.0496 (4)	0.5690 (3)	0.0383 (9)
C25	0.42684 (13)	0.0104 (4)	0.4908 (3)	0.0437 (10)
C26	0.41040 (14)	0.0726 (5)	0.4191 (3)	0.0542 (12)
H26	0.4201	0.0518	0.3663	0.065*
C27	0.38003 (17)	0.1647 (5)	0.4247 (3)	0.0535 (13)
H27	0.3682	0.2063	0.3756	0.064*
C28	0.36687 (15)	0.1963 (4)	0.5008 (3)	0.0458 (11)
H28	0.3457	0.2598	0.5040	0.055*
C29	0.46854 (15)	-0.1295 (6)	0.4130 (3)	0.0619 (13)
H29A	0.4832	-0.0568	0.3858	0.074*
H29B	0.4450	-0.1555	0.3754	0.074*
C30	0.49507 (17)	-0.2473 (7)	0.4297 (5)	0.0751 (17)
H30	0.5047	-0.2911	0.3824	0.090*
C31	0.5065 (2)	-0.2967 (5)	0.5026 (5)	0.080 (2)
H31A	0.4976	-0.2565	0.5518	0.097*
H31B	0.5237	-0.3731	0.5067	0.097*
F1	0.27033 (10)	0.5876 (3)	0.5693 (2)	0.0866 (10)
F2	0.21199 (9)	0.1647 (3)	0.5980 (2)	0.0759 (9)
F3	0.31653 (10)	0.1165 (3)	1.00528 (17)	0.0748 (9)
F4	0.39817 (14)	0.4857 (3)	0.9610 (2)	0.1073 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.03972 (12)	0.03992 (11)	0.02690 (11)	-0.00128 (6)	0.00483 (8)	-0.00145 (6)
N1	0.051 (2)	0.0460 (19)	0.0293 (19)	-0.0108 (16)	0.0137 (16)	-0.0091 (15)
N2	0.045 (2)	0.0455 (18)	0.038 (2)	-0.0053 (17)	0.0091 (17)	0.0043 (17)
N3	0.047 (2)	0.0424 (17)	0.0316 (19)	0.0009 (16)	0.0072 (16)	-0.0010 (16)
O1	0.0496 (17)	0.0548 (16)	0.0270 (15)	0.0049 (14)	-0.0033 (13)	0.0029 (14)
O2	0.085 (3)	0.074 (2)	0.053 (2)	0.038 (2)	0.0088 (19)	0.0119 (18)
O3	0.0536 (19)	0.0692 (19)	0.0477 (19)	0.0164 (16)	0.0118 (16)	-0.0069 (16)
C1	0.064 (3)	0.049 (2)	0.034 (2)	-0.008 (2)	0.009 (2)	-0.0010 (19)
C2	0.087 (4)	0.055 (3)	0.045 (3)	-0.016 (3)	0.013 (3)	-0.004 (2)
C3	0.078 (4)	0.065 (3)	0.051 (3)	-0.026 (3)	0.019 (3)	-0.009 (2)
C4	0.053 (3)	0.074 (3)	0.049 (3)	-0.019 (3)	0.009 (2)	-0.010 (3)
C5	0.046 (2)	0.058 (2)	0.030 (2)	-0.010 (2)	0.0149 (19)	-0.009 (2)
C6	0.042 (3)	0.061 (3)	0.034 (3)	0.002 (2)	0.008 (2)	-0.012 (2)
C7	0.045 (2)	0.051 (2)	0.028 (2)	0.0021 (19)	0.0061 (19)	-0.0085 (18)
C8	0.050 (3)	0.053 (2)	0.048 (3)	0.005 (2)	0.004 (2)	-0.009 (2)
C9	0.065 (3)	0.055 (3)	0.055 (3)	0.018 (2)	0.004 (3)	-0.011 (2)
C10	0.055 (3)	0.076 (3)	0.052 (3)	0.024 (3)	0.002 (2)	-0.016 (3)
C11	0.040 (3)	0.074 (3)	0.047 (3)	0.003 (2)	0.008 (2)	-0.015 (3)

C12	0.057 (3)	0.057 (3)	0.044 (3)	-0.010 (2)	0.015 (2)	0.008 (2)
C13	0.074 (4)	0.067 (3)	0.060 (3)	-0.021 (3)	0.016 (3)	0.013 (3)
C14	0.082 (4)	0.054 (3)	0.082 (4)	-0.025 (3)	0.011 (3)	0.003 (3)
C15	0.082 (4)	0.052 (3)	0.058 (3)	-0.022 (3)	0.010 (3)	-0.006 (2)
C16	0.055 (3)	0.042 (2)	0.040 (2)	-0.003 (2)	0.003 (2)	-0.0020 (19)
C17	0.056 (3)	0.045 (2)	0.034 (2)	-0.005 (2)	0.008 (2)	-0.0061 (19)
C18	0.042 (2)	0.0404 (19)	0.031 (2)	0.0027 (18)	0.0018 (18)	-0.0042 (18)
C19	0.050 (3)	0.049 (2)	0.032 (2)	-0.006 (2)	0.011 (2)	-0.0047 (19)
C20	0.067 (3)	0.055 (3)	0.038 (3)	-0.007 (2)	0.020 (3)	-0.003 (2)
C21	0.089 (4)	0.077 (4)	0.041 (3)	-0.016 (3)	0.019 (3)	-0.013 (3)
C22	0.097 (4)	0.055 (3)	0.044 (3)	-0.022 (3)	0.012 (3)	-0.020 (2)
C23	0.047 (3)	0.048 (2)	0.040 (3)	0.003 (2)	0.011 (2)	0.002 (2)
C24	0.042 (2)	0.0396 (19)	0.034 (2)	-0.0034 (18)	0.0066 (18)	-0.0004 (18)
C25	0.041 (2)	0.048 (2)	0.042 (3)	-0.0038 (19)	0.010 (2)	-0.005 (2)
C26	0.057 (3)	0.068 (3)	0.039 (3)	-0.006 (2)	0.013 (2)	-0.006 (2)
C27	0.062 (3)	0.071 (3)	0.027 (2)	0.007 (2)	0.000 (2)	0.003 (2)
C28	0.053 (3)	0.052 (2)	0.033 (2)	0.0068 (19)	0.004 (2)	-0.0005 (19)
C29	0.058 (3)	0.077 (3)	0.053 (3)	0.008 (3)	0.015 (3)	-0.021 (3)
C30	0.059 (3)	0.081 (4)	0.087 (5)	0.011 (3)	0.017 (3)	-0.022 (4)
C31	0.071 (4)	0.063 (3)	0.110 (6)	0.009 (3)	0.025 (4)	0.000 (3)
F1	0.090 (2)	0.0581 (16)	0.109 (3)	0.0262 (16)	-0.015 (2)	-0.0043 (17)
F2	0.0428 (16)	0.101 (2)	0.082 (3)	-0.0054 (15)	-0.0077 (16)	-0.0100 (18)
F3	0.100 (2)	0.087 (2)	0.0399 (16)	-0.0301 (18)	0.0257 (16)	-0.0026 (15)
F4	0.177 (4)	0.092 (2)	0.055 (2)	-0.071 (2)	0.024 (2)	-0.0337 (18)

Geometric parameters (Å, °)

Ir1—C7	1.983 (4)	C12—C13	1.371 (6)
Ir1—C18	2.002 (4)	C12—H12	0.9500
Ir1—N1	2.045 (3)	C13—C14	1.373 (8)
Ir1—N2	2.051 (4)	C13—H13	0.9500
Ir1—N3	2.132 (3)	C14—C15	1.368 (7)
Ir1—01	2.135 (3)	C14—H14	0.9500
N1-C1	1.339 (5)	C15—C16	1.404 (6)
N1C5	1.375 (6)	C15—H15	0.9500
N2-C12	1.341 (5)	C16—C17	1.465 (6)
N2-C16	1.367 (6)	C17—C22	1.384 (6)
N3—C24	1.343 (5)	C17—C18	1.417 (6)
N3—C28	1.352 (6)	C18—C19	1.404 (6)
O1—C23	1.307 (5)	C19—C20	1.369 (7)
O2—C23	1.212 (5)	С19—Н19	0.9500
O3—C25	1.346 (5)	C20—F3	1.361 (5)
O3—C29	1.438 (6)	C20—C21	1.365 (7)
C1—C2	1.381 (7)	C21—C22	1.359 (7)
C1—H1	0.9500	C21—H21	0.9500
C2—C3	1.364 (9)	C22—F4	1.367 (5)
C2—H2	0.9500	C23—C24	1.514 (6)
C3—C4	1.380 (7)	C24—C25	1.419 (6)
С3—Н3	0.9500	C25—C26	1.383 (6)

C4—C5	1.398 (6)	C26—C27	1.373 (7)
C4—H4	0.9500	С26—Н26	0.9500
C5—C6	1.465 (6)	C27—C28	1.362 (7)
C6—C11	1.391 (7)	C27—H27	0.9500
C6—C7	1.436 (6)	C28—H28	0.9500
С7—С8	1.397 (6)	C29—C30	1.479 (8)
C8—C9	1.369 (7)	С29—Н29А	0.9900
C8—H8	0.9500	С29—Н29В	0.9900
C9—F1	1.360 (5)	C30—C31	1.299 (10)
C9—C10	1.369 (7)	С30—Н30	0.9500
C10—C11	1.349 (8)	C31—H31A	0.9500
C10—H10	0.9500	C31—H31B	0.9500
C11—F2	1.382 (5)		
C7—Ir1—C18	90.86 (17)	C13—C12—H12	118.2
C7—Ir1—N1	81.10 (16)	C12—C13—C14	118.5 (5)
C18—Ir1—N1	94.43 (15)	С12—С13—Н13	120.7
C7—Ir1—N2	95.32 (15)	C14—C13—H13	120.7
C18—Ir1—N2	80.32 (16)	C15—C14—C13	119.4 (5)
N1—Ir1—N2	173.64 (13)	C15—C14—H14	120.3
C7—Ir1—N3	96.53 (15)	C13—C14—H14	120.3
C18—Ir1—N3	171.88 (15)	C14—C15—C16	120.5 (5)
N1—Ir1—N3	90.06 (13)	C14—C15—H15	119.7
N2—Ir1—N3	95.59 (14)	C16—C15—H15	119.7
C7—Ir1—O1	170.11 (14)	N2-C16-C15	119.3 (4)
C18—Ir1—O1	96.88 (14)	N2-C16-C17	113.4 (3)
N1—Ir1—O1	92.13 (13)	C15—C16—C17	127.2 (4)
N2—Ir1—O1	92.06 (13)	C22—C17—C18	118.7 (4)
N3—Ir1—O1	76.16 (12)	C22—C17—C16	126.0 (4)
C1—N1—C5	119.6 (4)	C18—C17—C16	115.2 (4)
C1—N1—Ir1	124.4 (3)	C19—C18—C17	117.6 (4)
C5—N1—Ir1	116.0 (3)	C19—C18—Ir1	127.5 (3)
C12—N2—C16	118.7 (4)	C17—C18—Ir1	114.8 (3)
C12—N2—Ir1	125.1 (3)	C20-C19-C18	119.7 (4)
C16—N2—Ir1	116.1 (3)	С20—С19—Н19	120.2
C24—N3—C28	120.4 (4)	С18—С19—Н19	120.2
C24—N3—Ir1	115.8 (3)	F3—C20—C21	117.2 (5)
C28—N3—Ir1	123.8 (3)	F3—C20—C19	119.1 (4)
C23—O1—Ir1	116.9 (3)	C21—C20—C19	123.6 (5)
C25—O3—C29	117.5 (4)	C22—C21—C20	116.6 (5)
N1—C1—C2	122.2 (5)	C22—C21—H21	121.7
N1—C1—H1	118.9	C20—C21—H21	121.7
C2—C1—H1	118.9	C21—C22—F4	117.0 (5)
C3—C2—C1	119.3 (5)	C21—C22—C17	123.7 (4)
С3—С2—Н2	120.4	F4—C22—C17	119.3 (5)
C1—C2—H2	120.4	O2—C23—O1	124.1 (4)
C2—C3—C4	119.7 (5)	O2—C23—C24	121.4 (4)
С2—С3—Н3	120.2	O1—C23—C24	114.5 (4)
С4—С3—Н3	120.2	N3—C24—C25	120.0 (4)
C3—C4—C5	119.9 (5)	N3—C24—C23	115.1 (4)

C3—C4—H4	120.0	C25—C24—C23	124.9 (4)
С5—С4—Н4	120.0	O3—C25—C26	124.4 (4)
N1—C5—C4	119.4 (4)	O3—C25—C24	117.0 (4)
N1—C5—C6	113.1 (4)	C26—C25—C24	118.6 (4)
C4—C5—C6	127.5 (4)	C27—C26—C25	119.6 (4)
C11—C6—C7	118.3 (4)	С27—С26—Н26	120.2
C11—C6—C5	126.5 (4)	С25—С26—Н26	120.2
C7—C6—C5	115.2 (4)	C28—C27—C26	120.0 (5)
C8—C7—C6	117.0 (4)	С28—С27—Н27	120.0
C8—C7—Ir1	128.1 (3)	С26—С27—Н27	120.0
C6—C7—Ir1	114.4 (3)	N3—C28—C27	121.4 (4)
C9—C8—C7	119.8 (4)	N3—C28—H28	119.3
С9—С8—Н8	120.1	C27—C28—H28	119.3
С7—С8—Н8	120.1	O3—C29—C30	107.4 (5)
F1—C9—C8	118.0 (5)	O3—C29—H29A	110.2
F1—C9—C10	117.3 (4)	С30—С29—Н29А	110.2
C8—C9—C10	124.6 (5)	O3—C29—H29B	110.2
C11—C10—C9	115.6 (4)	С30—С29—Н29В	110.2
C11-C10-H10	122.2	H29A—C29—H29B	108.5
C9—C10—H10	122.2	C31—C30—C29	126.5 (6)
C10-C11-F2	117.0 (4)	С31—С30—Н30	116.7
C10-C11-C6	124.6 (5)	С29—С30—Н30	116.7
F2—C11—C6	118.4 (5)	С30—С31—Н31А	120.0
N2-C12-C13	123.5 (5)	С30—С31—Н31В	120.0
N2—C12—H12	118.2	H31A—C31—H31B	120.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3···F1 ⁱ	0.95	2.60	2.997 (6)	106
C28—H28…F2 ⁱⁱ	0.95	2.55	3.280 (6)	134
C10—H10…F3 ⁱⁱⁱ	0.95	2.50	3.299 (6)	142
C12—H12…F4 ^{iv}	0.95	2.56	3.130 (6)	119
C26—H26···O1 ^{v}	0.95	2.63	3.519 (5)	155
C14— $H14$ ···O2 ^{vi}	0.95	2.54	3.275 (6)	134

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1/2, -*y*+1/2, -*z*+1; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) *x*, -*y*+1, *z*-1/2; (v) *x*, -*y*, *z*-1/2; (vi) *x*, *y*+1, *z*.

